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The ar t ic le  d iscusses  the s ta tement  of problems of local breakdown of a granular  bed under  
the action of a s t r eam f i l ter ing through it,  and a general  method of thei r  approximate analysis  
is suggested. The s imples t  examples  are  examined. 

The hydraul ic  fo rces  originating in the f i l t ra t ion of a gas or  dropping liquid in a granular  bed have a 
considerable  influence on the s t r e s s  state and the s t ruc tu re  of the bed. If the cha rac te r i s t i c  flow ra te  is 
eufficiently smal l ,  so that these forces  are  not large compared with the force  of gravi ty,  then such an influ- 
ence is l imited by the possibil i ty of local  repacking of par t i c les  leading to local changes in the effective p e r -  
meabil i ty of the bed, which manifes ts  i tself  in the distr ibution of the flow, and consequently,  also of the 
hydraul ic  fo rces  within it. When the mentioned cr i t ica l  speed,  depending on the s t r e s s  state of the bed (i.e.,  
geometry  of the bed, type of flow through it,  the physical  cha rac t e r i s t i c s  of the granular  ma te r i a l  and of the 
continuum) is at tained,  the l imit ing s t r e s s  state i s  rea l ized  in the ent i re  bed or  within a cer ta in  pa r t  of it. 
When the ra te  is fu r the r  increased ,  it is impossible to maintain the state of equil ibrium of the immovable 
bed: plast ic  flow begins which leads to the format ion of cavi t ies  in the bed, and possibly to the  subsequent 
l iquefaction of the granular  mater ia l .  

The  p rac t i ca l  importance of the p roces se s  of local breakdown of the granular  bed is ve ry  great .  These  
p r o c e s s e s , i n p a r t i c u l a r ,  de te rmine  the nature  and the p a r a m e t e r s  of the initial development  of spouts in the 
spouting l ayers  [1] and a l together  the fo rm  and dynamics of development  of cavit ies upon introduction of jets  
of the medium into the granular  bed [2]. In this connection such p r o c e s s e s  are  also important  to the f o r m a -  
tion of the s t ruc tu re  of the zone ad j acen t t o  the s c r een  of apparatus with fluidized or  immovable infi l t rated 
beds,  especia l ly  in the usually used fa i r ly  coarse  gas-dis t r ibut ing devices [3]. In pa r t i cu la r ,  it is possible 
that si tuations o c c u r  with par t ia l  l iquefaction of the granular  ma te r i a l  local ized in l imited zones near  indivi- 
dual jets  introduced into the bed by such a device.  Foci  of breakdown inside the bed may be caused by in-  
homogenei t ies  of packing of the pa r t i c l e s ,  and also by inhomogeneit ies of the s t r eam,  as is the case in p ro -  
cesses  of channel format ion and in flow around var ious baffles and obstacles  inside the bed [4, 5]. Final ly,  
the same type of p roce s se s  de te rmines  the initial l iquefaction of granular  beds even when the s t r eam of l ique- 
fying agent is uniformly distr ibuted.  

Even if the distr ibution of the s t r e am and of the hydraul ic  fo rces  in the bed is known, the analysis  of the 
above p roc e s se s  leads to ve ry  complicated problems  where  it is n ece s sa ry  to de te rmine  not only the cr i t ica l  
p a r a m e t e r s  of the s t r e am but also the Shape of the region of p las t ic  flow corresponding to incipient b reak-  
down. * This  complexi ty  is to a large  extent  due to the lack of a completely sa t i s fac tory  model of granular  
media ,  and also to mathemat ica l  diff icult ies a r i s ing  in solving the quas i l inear  sys tem of equations of s tat ic  
equi l ibr ium,  closed with the aid of some additional assumption,  in the region with unknown boundary. The 
most  natural  hypothesis  of c losure  consis ts  in the assumption that immediate ly  before breakdown within the 
ent i re  mentioned region (and not only, let  us say,  on its borders )  Coulomb's  law is fulfilled. An al ternat ive 
hypothesis ,  that in this region one of the pr incipal  s t r e s s e s  vanishes ,  was suggested by Gupalo and Chere -  
panov [9] and used,  in pa r t i cu la r ,  fo r  descr ib ing  in [10] the local l iquefaction of the bed near  baffles built into 
it. This  hypothesis is apparently c o r r e c t  in l iquefaction of beds with constant c ross  section by a uniform 

*An exception a re  also the ra the r  complex problems of the initial fluidization in apparatuses  with ve r t i ca l  [6] and 
lightly inclined [7, 8] walls where  it may be assumed that the boundaries of this region coincide with the walls ,  
i .e . ,  that  they a re  previously  known. However ,  with increas ing  angle of s lope,  such an assumption ceases  to 
be c o r r e c t :  the initial breakdown of the bed occurs  in a re la t ive ly  nar row channel [1] inside the bed, with sub- 

sequent development of spouting. 
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Fig. 1. I l lustrat ion of the region of plast ic  
shear  (a) and diagram of the s t r e s se s  acting 
on its boundary (b). 

s t r eam,  if the bed is f ree  of spreading s t r e s s e s  and associa ted  forces  of near-wal l  friction. In more  com-  
plicated si tuations,  as indicated by the resu l t s  of [8], breakdown of the bed occurs  under conditions when none 
of the pr incipal  s t r e s s e s  inside the region of plast ic  shea r  vanishes.  Below we use the f i rs t  of the mentioned 
hypotheses with some additional simplifying assumptions.  

F i r s t  of all ,  we consider  the distr ibution of the flow of continuum known f rom the solution of the c o r -  
responding f i l t rat ion problem. Here we completely neglect  the existence of feedback between the cha r ac -  
t e r i s t i cs  of the s t r eam and the state of the granular  mate r ia l  which we consider homogeneous and incom- 
press ible .  That  means that we neglect both the elast ic  and plast ic  deformations of the mater ia l  under the 
effect  of hydraul ic  fo rces ,  i .e. ,  local porosi ty  and permeabi l i ty  of the bed a re  thought not to be dependent on 
the p a r a m e t e r s  of the s t r eam up to the instant of breakdown of static equilibrium. We note, however,  that in 
many cases  the corre la t ion  between the state of s t r e ss  of the bed and its effective hydraul ic  charac te r i s t i c s  
may play an important  part .  This can explain, e .g. ,  the different nature of the distribution of the gas s t r e a m  
over  the c ross  section of the granular  bed in f i l t rat ion in the direct ion of the force of gravity and in the oppo- 
site direct ion [11]. 

For  the sake of s implic i ty ,  we examine here  only problems where there  is symmet ry  with respec t  to a 
ver t ica l  plane or  axis ,  although the methods used can easi ly be general ized to more  complicated situations. 
Let  the region of l imiting plas t ic  equi l ibr ium, when the s t r eam attains its cr i t ical  value, have the shape 
i l lustrated in Fig. la.  The horizontal  coordinate x represen ts  an ordinary Car tes ian or  radial coordinate for  
a plane or  ax i symmet r i c  problem,  respect ively;  the sur face  [xl = s(y) bounds the mentioned region,  and be -  
tween the tangential and normal  s t r e s s e s  on this sur face ,  the following corre la t ion  applies:  

�9 w = ~ tg ~. (1) 

F i r s t  we find the corre la t ion  between the magnitudes in (1) and the s t r e s se s  in the examined sys tem of 
coordinates at the boundary of the region. If ~ is the angle between the slope of the plane tangential to the 
boundary and the ver t ica l ,  and 0 is the angle between this plane and the area  II' of action of the maximum 
principal  compress ive  s t r e s s  (Fig. lb),  then the state of the mater ia l  at the examined point of the boundary- 
is descr ibed by the points C, A, and A' on the Mohr c i rc le  shown in Fig. 2. It follows f rom an analysis of 
the Mohr c i rc le  that 

c% = R sin-~ qD cos2 % ~w = R cos% 

a(~,)u = R sin -i (p [ 1 ~ sin q) sin (2~ -}- q))], (2) 

T(x~ ) = R cos (2~p -I- (p), 2R = cr i - -  a~, ~ = arcig s' (y). 

To eliminate the necess i ty  of investigating the state of s t r e s s  inside the region in detail and to simplify 
considerably the calculat ions,  it is desirable  immediately to introduce,  instead of the magnitudes ax,y(X , y) 
and Txw(X, y),  the corresponding magnitudes averaged over  the sections of the region by the planes y = const. 
If the ~ngle of near-wal l  fr ict ion is considerably sma l l e r  than the angle ~0 of internal fr ict ion of the granular  
mate r ia l ,  it is often recommended to determine the approximate corre la t ion between these magnitudes on the 
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Fig. 2. Mohr circle for the l imiting state 
of s t r e s s  inside the region of plast ic  shear,  

basis of the assumption that the horizontal normal stress over the section is constant [12, 13]. In the case 
under examination, the mentioned angles coincide, and such an assumption is fairly rough: it means that the 
state of stress at any point of the section is described by the same points on the Molar circle as at the boundary 
points of the section, i.e., it corresponds to the Jansen model with a coefficient of lateral pressure deuendin~ 

and consequently also on y,  which can be easily expressed f r o m  (2) as the rat io of the s t resses  ~xW)/a(y w~. on 

In real i ty ,  when x changes f rom zero to s(y), point D of the Molar circle in Fig. 2 moves monotonically 
upward f rom po$ition B to i t s  l imiting position at point A, and the s t r e s ses  ax, ay change correspondingly 
f rom a2, a I to a{x w}, ~(w) The s imples t  assumption refining Jansen ' s  model corresponds to the hypothesis 
that the angle $ in F i ~  2 then changes approximately l inearly f rom its l imiting value ~/2 for x = 0 to 2~ + q for 

x =  s(y). T he n t he  s t r e s ses  ax,y(X, y ) a r e  expressed T h e r e f o r e ,  o r t h e  plane p r o  l e m w ~  obtain bY t h e s a m e f k i n d ~  f~ in the 
l a t t e r  we replace 2r + ~ by ~ / 2 - ( r / 2 - 2 r  [x/s(y)]. 

Sin ~0 cos (2* + cp) ] 
sin q~ 

and for  the ax i symmet r i c  problem 

sin (2, + (p) -- 1 l t [ cos (2, +_ 

Taking (2) and (3) into account,  we have for  the plane problem (a --- (ay)) 

~ w  = " ( # / 2  - -  2 ,  - -  q~) c o s  ~ + 

(r #/2 - -  2,  - + + sin (p cos (2,+(p) ' 

and for the ax i symmet r i c  problem on the basis of (2) and ( 4 )  

aw (#/2 - -  2 ,  --  ~)2 cos z 
(~/2--2,--r sin 9 [(#/2~2,--~) cos ( 2 , + ~ ) +  sin (2 ,+9 )~ I ]  

In both cases ,  v w is expressed by a w with the aid of (1). 

Examining the balance of forces  acting on the e lement  {y, y + dy) of the investigated region, we write 
t h e  equil ibrium equation. We have (cf. [12. 13]) 

d (s~a) + le ("c w - -  ow t g , ) s  k-1 = fk (Y; s; .u), 
d.u 

s 

f~ (y; s; u) = k  ~F(x, y; u) xk-~ dx--vs~, 
b 

where k is equal to 1 and 2 for  the plane and the ax i symmetr ic  problem, respectively.  
a w by a,  we obtain finally f rom (7) in accordance with (1), (5), and (6) that 

a (sk~) + & s ~ - ~  = fh (y, s, u), 
dy 

� 9  

(5) 

(6) 

(7) 

If we express  r w and 

(s) 
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Fig.  3. Dependence of the 
c o e f f i c i e n t s  a and b f o r  the  
p l a n e  and  the  a x i s y m m e t r i c  
p r o b l e m s  on the  a n g l e  o f  
in te rna l  f r ic t ion  of the g ranu-  
l a r  medium.  

w h e r e  

A! = (tg qD - -  tg r (n/2 - -  2r - -  ~) cos ~ r 
~/2 - -  2r - -  (p + sin q~ cos (2r + r ' 

= (/g q~ - -  tg r (hi2 --- 2r  - -  q))~ cos ~ q~ 

A2 (n12"2r 2 sin (p [(n/2--2r -- qD) cos i2r + r + 's in (2r ~- qD)-- I i" 

(9) 

T h e  m a t h e m a t i c a l  invest igat ion of the p rob l em is grea t ly  compl ica ted  by the nonl inear  dependence of A k 
on $ = a r c t a n s ' { y ) .  O n t h e  o the r  hand,  in many p rac t i ca l  s i tua t ions ,  the angle of slope of the boundar ies  of 
the region to the ve r t i c a l  is sma l l  compared  with the angle of in ternal  f r ic t ion  of the m a t e r i a l ,  and it is an 
advantage to use  the T a y l o r  expansion of A k f r o m  (9) 

& (~, , )  = ak (~) + bh (~) s' (y) + . . . .  s' (y) = tg r (10) 

(the analyt ica l  exp re s s ions  of the coeff icients  ak, b k . . . .  a r e  not wr i t ten  out because  they a re  so long). 
Summary  f inal  r e s u l t s  may  be obtained on the bas i s  of models  in which the f i r s t  one or  two t e r m s  of the s e r i e s  
(10) a r e  taken into account.  In that case  it  is not c lea r  beforehand which of these  two models  is p r e f e r a b l e ,  
and the choice between them has  to be made by compar i son  with the exper iment .  The dependences of the 
coeff icients  ak, b k on ~0 a r e  shown in Fig. 3. 

The genera l  solution of Eq. (8), with the obvious boundary condition of cr vanishing at the level  y = 0, is 
wr i t t en  in the f o r m  

e-~ ~ i ~ ( y ; s ; u ) =  7 . t  [~ dY' G (y; s)= a + bs' 
O S 

0 o 

- - d y ,  (11)  

where  the functions f ,  a, and b a r e  de te rmined  in (7), (9), and (10), and the subsc r ip t  k is omit ted fo r  s i m -  
pl ic i ty ;  the f i r s t  of the above models  co r r e sponds  to b = 0. The equation for  de te rmin ing  the c r i t i ca l  flow 
r a t e ,  co r re spond ing  to the beginning of breakdown of the bed,  is obtained in impl ic i t  f o r m  f r o m  the r e q u i r e -  
ment  that  the s t r e s s  vanishes  a lso  at the upper  boundary y = h of the examined region [8], i . e . ,  

o (h; s; u) = 0. (12) 

The value of u hence de t e rmined  r e p r e s e n t s  the functional of the functions s (y) whose concre te  f o r m  
depends on the dis t r ibut ion of the s t r e a m  of the continuum in the s y s t e m  and on the type of dependence of the 
spec i f ic  hydraul ic  fo rce  F on i ts  veloci ty .  However ,  in the mos t  genera l  case  it  may  be a s sumed  that the bed 
b r eaks  down when the m i n i m um  veloci ty  u m is a t ta ined at  which in pr inciple  it is poss ib le  that  a region of 
p l a s t i c  f low, e m e r g i n g  on the upper  boundary of the bed (cf. [8]), f o r m s .  Thus,  we a r r i v e  at the following 
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e x t r e m u m  p rob lem:  we have to find such a prof i le  Sm(Y) of the mentioned region that the functional u, i m -  
plicit ly de te rmined  by the re la t ion (12), a s s u m e s  its min imum value;  then the corresponding value Um is also 
calculated f r o m  (12) by substi tut ing the function Sm(Y), a l ready  found, into the in tegral  in (11). 

By a number  of per fec t ly  natural  s impl i f ica t ions ,  the fo rmula ted  p rob lem is reduced to the s tandard  
p r o b l e m s  of var ia t iona l  calculus.  Thus ,  we desc r ibe  the force  F with the aid of the exponential  law* 

F (x, y; u) : q.a"V m-I (x, y) Vp (x, y), (13) 

where  V is the d imens ion less  speed of f i l ter ing.  Then the function f ,  which also f igures  in (11), is r e p r e -  
sented in the f o r m  

$ 

f = au"v( ' )  - -  ?s~, o("1) (y; s) =k~ V'-tVyx~-'  dx. 
0 

In addition, we introduce the function 

0 

where  s o is the value of s(y) when y = 0. 

where  

(14) 

e ~ -= g, (15) 

Then it follows f r o m  (11), (12), (14), and (15) that  

h h 

(I), (g,g') : S Sk+bgdY' (I)2(g' g') = ~ v('')sbgdy" 
0 0 

(17) 

If @l = C = const ,  then the examined p rob l em reduces  to the i s o m e t r i c  p rob lem of the m a x i m u m  of the 
functional ~ .  The sought ex t r em a  will  be the unconditional e x t r e m a  of the functional ~--~2 + k ~ l ,  where  k 
i s  the Lagrange  mu l t i p l i e r  which can be de te rmined  a p o s t e r i o r i  f r o m  the condition @l = C [14]. Obviously,  
when y = 0, we m u s t  have g = 1; when y = h,  the "na tura l"  boundary  condition [14] has  to be sa t is f ied .  In -  
t roducing  the function 

Il  (y; s; )~) = iv (m) (y; s) -F Lsk] sb, (18) 

where  s(y) is e x p r e s s e d  through g(y), and i ts  de r iva t ive  with the aid of the f i r s t  ra t io  in (16), we wr i te  the 
Eu le r  equation fo r  the functional (1, and the boundary conditions to it. 

Oil a OH 0tt ag 
Og g' as Og' g,2 

and using the de te rmina t ion  of @, we obtain a f t e r  calculat ions that  

d (s2Oil  (s oil ) 
d--y\ as ] + a --~ss + ii - -0 ,  

Taking into account  the equali t ies  

OH 

0s 
(19) 

~ s  l y e - -  0. (20) 

The solution of this p rob l em  yields  the function s(y) which depends additionally on k o r  C as on a 
p a r a m e t e r ;  the co r respond ing  function g(y) is calcula ted f r o m  the solution of the f i r s t  equation in (16) on condi-  
t ion that  g(0) = 1. Af te r  this it is easy  to calcula te  the functionals  ~1 and @2 f r o m  (17) and to de te rmine  u 
f r o m  the second ra t io  in (16). Then we have to compare  the values  u cor responding  to di f ferent  k, and se lec t  
the min imal  u m f r o m  them cor respond ing  to some  k m.  The value u m and the solution sin(y) of the p rob lem 
(20), with h = k m provide  the solution of the p rob l em.  

The desc r ibed  calculat ions a r e  ve ry  l abor ious ,  and in mos t  eases  they can be ca r r i ed  out only n u m e r i -  
cally.  T h e r e f o r e ,  to obtain an approx imate  solution in analog f o r m ,  it is advisable  to use  s t rong  d i rec t  
methods  of va r ia t iona l  calculus [14] and be guided in the se lec t ion of the sample  functions s(y) by e x p e r i m e n -  
tal  data or  by some probable  phys ica l  cons idera t ions .  

*Any other  e m p i r i c a l  fo rmula  may  a lso  be used fo r  the f o r c e ,  e .g . ,  E r g a n ' s  binomial  fo rmula ,  but this leads 
to m o r e  c u m b e r s o m e  calculat ions.  We also note that  accord ing  to the equations of the theory of f i l t ra t ion,  the 
force  F may be rep laced  by (K/~)(ap/Oy), where  p is the p r e s s u r e ;  ~ is the v i scos i ty  of the continuum; K is the 
pe rmeab i l i t y  of the bed. 
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Fig. 4, Dependence of the angle of slope 
r  of the boundary of the region of p las t ic  
shea r  (a) and  of the p a r a m e t e r  Um/U , ,  c o r -  
responding to the beginning of breakdown 
(b), on ~0 for  plane and a x i s y m m e t r i c  je t s  
(solid and dashed l ines ,  respect ively};  
cu rves  1 and 2 co r re spond  to the models  
w i t h A ~ a a n d A ~ a  + b t a n @ .  

As e x a m p l e s ,  which even by t h e m s e l v e s  a r e  of in t e res t ,  we will  examine the puncture  of a f ine -g ra ined  
bed (In = 1) by a plane and an a x i s y m m e t r i c  s t r e a m .  F o r  the  sake of s impl ic i ty  we a s s u m e ,  as in [7, 8], 
that  the s t r e a m s  d iverge  rad ia l ly ,  i . e . ,  

___L_q Vy = (h + yo) k (y + Yo) 
u = (h +y0) ~ ' I(Y + Yo) 2 + xZ] (l+k)/2 " (21) 

Equations (21) a r e  s t r i c t ly  fulfi l led for  pan- type  and conical  appa ra tuses  when the lower  and upper  boundar ies  
of the bed a r e  cyl indr ica l  or  sphe r i ca l  su r f aces  with radi i  Y0 and h + Y0, r e spec t ive ly ;  for  beds of o the r  shape ,  
e .g. ,  fo r  an unbounded hor izonta l  bed, (21) is not c o r r e c t  nea r  the mouth of the je t  as well  as in the vicini ty 
of the upper  boundary of the bed. In this p r o b l e m ,  the magni tude q has the meaning  of flow ra te  of the m e d i u m  
p e r  unit l i nea r  or  solid angle,  and u,  the speed of the medium at the upper  boundary of the bed. 

We cons ider  the channel ,  ove r  which the breakdown of the bed is effected f i r s t ,  as fa i r ly  na r row,  and we 
expand Vy into a s e r i e s  of powers  of x/(y + Y0). Then ,  in accordance  with (13) and (14), with k = I and 2, we 
obtain f r o m  (21) 

y + y o  [ 3 ~ y+yo  / J 

vr 1.=2 \ ~ ]  [ 4 \ y q - y o  ] J"  

(22) 

In case  of radia l  flow of the je t ,  it is na tura l  to expect  that s(y) is a l inear  function o f y  +Y0. T h e r e  is 
a l so  expe r imen ta l  evidence avai lab le  that  s(y) is c lose to l inear  even in more  genera l  s i tuat ions [2, 8]. We 
t h e r e f o r e  approx ima te  

s (y) = v "i (y -}- Yo), (23) 

where  v is a p a r a m e t e r  that has to be de te rmined .  

If we calcula te  the functional (17)with the aid of (22) and (23), we obtain f r o m  the second equation in 
(16) fo r  a plane je t  

u .  v 2 1 - } - b + a v  (1 -+-Z)2+b+'~V--Z~+b+av 
U . ~ - .  

1 -i-" z v z -  1/3 2 - - } - b + a v  (1 W z) l+bq-aV--zl'+b"}-av (24) 

and fo r  an a x i s y m m e t r i c  je t  

u ,  'v z 1 . @ b + a v  (1 q-z)3+t'+aV--zS+t'+av 
t t~ - - -  

(1 + z )  z v 2 - 3 / 4  3 @ b + a v  (t + z )  '+b+av~z lq-b+av " (25) 
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Here  we introduced the minimum ra te  of flutdization u. and the re la t ive  size of the hole z through which the 
je t  flows out: 

u, =: y/~, z ----- yo/h. (26) 

F o r  the sake of s impl ic i ty ,  we examine only the si tuat ion when z << 1. Then the value Vm, providing the 
min imum for  the express ion  (24), sa t i s f i es  the equation 

av,n vT~-- = ~ - ( l  q-b-t-av,~)(2 +b+av,~),  (27) 

and the unique min imum of (25) is at tained for  v = ~m, where  v m is the root  of the equation 

2 -4- (I q- b q- arm) (3 q- b q- av,,). (28) arm vm- -  

The dependences of the cor responding  angle between the slope Cm = a r c t a n  u ~  of the boundaries  of the 
region of p las t ic  flow and the ve r t i ca l  on the angle of in ternal  f r ic t ion  of the granular  medium cor responding  
to both suggested models  (b = 0 and b < 0) a r e  shown in Fig. 4a. As was to be expected on the bas is  of genera l  
cons idera t ions ,  for  an a x i s y m m e t r i c  je t ,  the values of ~m a re  substant ia l ly  s m a l l e r  than for  the plane jet .  
F igure  4b shows the cor responding  dependences of ~ on the magnitude of urn/u,. This  magnitude is s m a l l e r  
than unity,  i . e . ,  breakdown of the bed begins at l i nea r  f i l t ra t ion  veloci t ies  on the upper  boundary that a re  
s m a l l e r  than the initial  speed of fluidization [7, 8]. 

The  curves  in Fig. 4 favor  se lec t ion of the f i r s t  model  when the dependence of A on ~ is not taken into 
account  at  all.  In fac t ,  this model  co r r ec t l y  e x p r e s s e s  the inc rease  in urn/u, with inc reas ing  ~m in a c c o r -  
dance with the expe r imen ta l  data p r e sen t ed ,  e .g . ,  in [2, 8]. The second model  de sc r ibe s  the cor re la t ion  be-  
tween Um/U . and ~m incor rec t ly .  Th is  is not su rp r i s i ng  because  the angle ~m is approx imate ly  the same  as 
~, so that  us ing  two t e r m s  of the expansion in (10) in this case  is incor rec t .  However ,  the second model  may  
be m o r e  accura t e  in si tuations where  ~b m << ~, i .e . ,  for  ve ry  nar row regions  of p las t ic  shea r  or iginat ing,  e . g . ,  
dur ing the p r o c e s s  of channel format ion .  

We want to point out that  if a bed is examined in an appara tus  with a smal l  angle between the wal l s ,  and 
we compare  the value of u~u m ,  calculated above,  with the c r i t i ca l  value de te rmined  in [8], we can answer  the 
quest ion of what does occur  in r ea l i t y  - p las t i c  s h e a r  of the e x . m i n e d  type or  shea r  along the walls  of the ap-  
paxa tus .  

The quest ion of what happens to the s y s t e m  a f t e r  the initial breakdown of s ta t ic  equi l ibr ium requ i res  
independent analys is .  Exper ience  indicates  that with fu r the r  i nc rease  in the flow rate  of the med ium,  a s table  
s ta te  of the bad with cavity is e s t ab l i shed ;  the height of the cavity i nc rea se s  with inc reas ing  ra te  until the 
c r i t i ca l  flow ra te  is at tained at which an instantaneous "puncture"  of the bed occurs .  An analys is  of these 
phenomena,  and a lso  a compar i son  with expe r imen ta l  data ,  will  be p resen ted  in one of the subsequent  works .  

A 
a , b  
F 
G, g 
H 

h 
k = 1 a n d  2 

m 

q 
R 
S 

U 

u,  
v(m) 

x ,  y 

NOTATION 

is the function introduced into (9); 
a r e  the coeff icients  of expansion into T a y l o r  s e r i e s ;  
is the spec i f ic  fo rce  of hydraul ic  r e s i s t a n c e  of the g ranu la r  bed; 
a r e  the functions introduced into (11) and (15); 
is the function f r o m  (18); 
is the height of the bed; 
a r e  the plane and a x i s y m m e t r i c  p r o b l e m s ,  r e spec t ive ly ;  
is the coeff icient  in the power  law fo r  hydraul ic  r e s i s t ance ;  
is the flow ra te  of the continuum p e r  unit l i nea r  or  solid angle;  
is the radius  of the Mohr c i rc le ;  
is the coordinate  of the boundary of the region of p las t i c  shea r ;  
is the d imensional  f i l t ra t ion  veloci ty;  
is the m i n i m um  fluidizat ion veloci ty;  
is the function in t roduced into (14); 
a r e  the coordina tes ;  
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OL 

T 
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# 

P 

(Y 

al, a2 
T 

r 

are the parameters determined in (21) and (26); 
is the coefficient of hydraulic resistance; 
is the effective specific weight of the granular material;  
is the angle between the tangential plane on the boundary of the region of plastic shear and the 
area of maximum compressive s tress;  
is the angle determined in Fig. 2; 
is the Lagrange multiplier; 
is the parameter in (23); 
is the normal compressive s t ress ;  
are the principal compressive s t resses ;  
is the tangential s t ress;  
are the functtonals introduced into (17); 
is the angle of internal friction of granular material;  
is the angle between the plane, tangential to the boundary of the region of plastic shear, and 
the vertical. 

S u b s c r i p t  

m 
W 

prime 
angle 
brackets 

relates to magnitudes corresponding to the initial plastic shear; 
relates to the state of s t ress  on the boundary of the region of plastic shear; 
differentiation of a function with respect to its argument; 

averaged s t resses  with respect to the section y = const in the region of plastic shear. 
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