BREAKDOWN THEORY OF A GRANULAR BED BY
THE FLOW OF A CONTINUUM
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The article discusses the statement of problems of local breakdown of a granular bed under
the action of a stream filtering through it, and a general method of their approximate analysis
is suggested. The simplest examples are examined,

The hydraulic forces originating in the filtration of a gas or dropping liquid in a granular bed have a
considerable influence on the stress state and the structure of the bed. If the characteristic flow rate is
sufficiently small, so that these forces are not large compared with the force of gravity, then suech an influ-
ence is limited by the possibility of local repacking of particles leading to local changes in the effective per-
meability of the bed, which manifests itself in the distribution of the flow, and consequently, also of the
hydraulic forces within it. When the mentioned critical speed, depending on the stress state of the bed (i.e.,
geometry of the bed, type of flow through it, the physical characteristics of the granular material and of the
continuum) is attained, the limiting stress state.is realized in the entire bed or within a certain part of it.
When the rate is further increased, it is impossible to maintain the state of equilibrium of the immovable
bed: plastic flow begins which leads to the formation of cavities in the bed, and possibly fo the subsequent
liquefaction of the granular material.

The practical importance of the processes.of local breakdown of the granular bed is very great. These
processes, inparticular, determine the nature and the parameters of the initial development of spouts in the
spouting layers [1] and altogether the form and dynamics of development of cavities upon introduction of jets
of the medium into the granular bed [2]. In this connection such processes are also important to the forma-
tion of the structure of the zone adjacent to the screen of apparatus with fluidized or immovable infiltrated
beds, especially in the usually used fairly coarse gas-distributing devices {3]. In particular, it is possible
that situations occur with partial liquefaction of the granular material localized in limited zones near indivi-
dual jets introduced into the bed by such a device. Foci of breakdown inside the bed may be caused by in-
homogeneities of packing of the particles, and also by inhomogeneities of the stream, as is the case in pro-
cesses of channel formation and in flow around various baffles and obstacles inside the bed [4, 5], Finally,
the same type of processes determines the initial liquefaction of granular beds even when the stream of lique-
fying agent is uniformly distributed.

Even if the distribution of the stream and of the hydraulic forces in the bed is known, the analysis of the
above processes leads to very complicated problems where it is necessary to determine not only the critical
parameters of the stream but also the shape of the region of plastic flow corresponding to incipient break-
down.* This complexity is to a large extent due to the lack of a completely satisfactory model of granular
media, and also to mathematical difficulties arising in solving the quasilinear system of equations of static
equilibrium, closed with the aid of some additional assumption, in the region with unknown boundary. The
most natural hypothesis of closure consists in the assumption that immediately before breakdown within the
entire mentioned region (and not only, let us say, on its borders) Coulomb's law is fulfilled. An alternative
hypothesis, that in this region one of the principal stresses vanishes, was suggested by Gupalo and Chere-
panov [9] and used, in particular, for describing in [10] the local liquefaction of the bed near baffles built into
it. This hypothesis is apparently correct in liquefaction of beds with constant cross section by a uniform

*An exception are also the rather complex problems of the initial fluidization in apparatuses with vertical [6] and
lightly inclined [7, 8] walls where it may be assumed that the boundaries of this region coincide with the walls,
i.e., that they are previously known. However, with increasing angle of slope, such an assumption ceases to

be correct: the initial breakdown of the bed occurs in a relatively narrow channel [1] inside the bed, with sub-
sequent development of apouting.
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Fig. 1, IHlustration of the region of plastic
shear (a) and diagram of the stresses acting
on its boundary (b).

stream, if the bed is free of spreading stresses and associated forces of near-wall friction. In more com-
plicated situations, as indicated by the results of [8], breakdown of the bed occurs under conditions when none
of the principal stresses inside the region of plastic shear vanishes, Below we use the first of the mentioned
hypotheses with some additional simplifying assumptions.

First of all, we consider the distribution of the flow of continuum known from the solution of the cor-
responding filtration problem. Here we completely neglect the existence of feedback between the charac-
teristics of the stream and the state of the granular material which we consider homogeneous and incom-
pressible. That means that we neglect both the elastic and plastic deformations of the material under the
effect of hydraulic forces, i.e., local porosity and permeability of the bed are thought not to be dependent on
the parameters of the stream up to the instant of breakdown of static equilibrium. We note, however, that in
many cases the correlation between the state of stress of the bed and its effective hydraulic characteristics
may play an important part. This can explain, e.g., the different nature of the distribution of the gas stream
over the cross section of the granular bed in filtration in the direction of the force of gravity and in the oppo-
site direction [11].

For the sake of simplicity, we examine here only problems where there is symmetry with respect to a
vertical plane or axis, although the methods used can easily be generalized to more complicated situations.
Let the region of limiting plastic equilibrium, when the stream attains its critical value, have the shape
illustrated in Fig, 1a. The horizontal coordinate x represents an ordinary Cartesian or radial coordinate for
a plane or axisymmetric problem, respectively; the surface |x| = s(y) bounds the mentioned region, and be-
tween the tangential and normal stresses on this surface, the following correlation applies:

T, = G, 12 @. 1)

First we find the correlation between the magnitudes in (1) and the stresses in the examined system of
coordinates at the boundary of the region. If § is the angle between the slope of the plane tangential to the
boundary and the vertical, and @ is the angle between this plane and the area II' of action of the maximum
principal compressive stress (Fig.1b), then the state of the material at the examined point of the boundary
is described by the points C, A, and A' on the Mohr circle shown in Fig.2, It follows from an analysis of
the Mohr circle that

o, =Rsin"*¢cos?q, 7, =Rcosq,
0} = Rsin™to [1 F sin @ sin (2¢ + )], )
t,(f;,’) =Rcos(29+¢), 2R =0,—0, = arcigs {(y).

To eliminate the necessity of investigating the state of stress inside the region in detail and to simplify
considerably the calculations, it is desirable immediately to introduce, instead of the magnitudes Oy ’y(x, v)
and Txy (X, y), the corresponding magnitudes averaged over the sections of the region hy the planes y = const.
If the angle of near-wall friction is considerably smaller than the angle ¢ of internal friction of the granular
material, it is often recommended to determine the approximate correlation between these magnitudes on the

1041



-1

Tw
~(@)
X

Fig. 2. Mohr circle for the limiting state
of stress inside the region of plastic shear.

bagis of the assumption that the horizontal normal stress over the section is consfant (12, 13], In the case
under examination, the mentioned angles coincide, and such an assumption is fairly rough: it means that the
state of stress at any point of the section is described by the same points on the Mohr circle as at the boundary
points of the section, i.e., it corresponds to the Jansen model with a coefficient of lateral pressure dependin
on ¥, and consequently also on y, which can be easily expressed from (2) as the ratio of the stresses O'XW)/O'}(IW .

In reality, when x changes from zero to s(y), point D of the Mohr circle in Fig. 2 moves monotonically
upward from po?v%ion B to its limiting position at point A, and the stresses oy, oy change correspondingly
from o, oy to oy *, o), The simplest assumption refining Jansen's model corresponds to the hypothesis
that the angle # in Fig. 2 then changes approximately linearly from its limiting value 7/2 for x = 0 to 2y + ¢ for
x = 8(y). Then the stresses ox y(x,y) are expressed by the same kind of formulas as a}tw)(x) in (2) if in the
‘latter we replace 2y + ¢ by /2~ (/2 —2¢ —¢)[x/s(y)]. Therefore, for the plane problem we obtain

R sin @ cos (2¢ +q>)] :
ey ) = St chaid b SRIL ) 3
(O sincp[ 2 —2p—@ ®
and for the axisymmetric problem
R [ cos@p+¢) ., sin@p+q)—1 "
¢ = A .
{ Ox,y > o [1$2sm<P[m2 5% q>+(n/2 2— o7 ]} 4)

Taking (2) and (3) into account, we have for the plane problem (o = (ay))

(/2 — 29— @) cos? @ (5)
/2 — 2% — @ -+ sin @ cos (29-+¢) '

G,
G

and for the axisymmetric problem on the basis of (2) and {4)

Sw . (/2 — 29 — ¢)? cos? @
0 (W2—2p—@P-+2 sin ¢ [(1/2—29— @) cos (2p+¢)+- sin (2p-+¢)—1] (6)

Q

In both cases, Ty is expressed by dy, with the aid of (1).

Examining the balance of forces acting on the element (y, y + dy) of the investigated region, we write
the equilibrium equation. We have (cf. [12, 13))
. ,
—‘.iid%;g)— + k(Tw — 0y tg “J)‘Sk_l = fh (y! 35 'u)v
o . ()
Iulys s w) =k [ F(x, 45 u)x¥1dx —pst,

o

where k is equal to 1 and 2 for the plane and the axisymmetric problem, respectively. If we express Ty and
ay by 0, we obtain finally from (7) in accordance with (1), (5), and (6) that

A + ApstTi0 = i (s 55 w), v
dy
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Fig. 3. Dependence of the
coefficients a and b for the
plane and the axisymmetric
problems on the angle of
internal friction of the granu-
lar medium,

where

(tgo—tg¥) (/2 — 29 — ) cos’p
/2 — 2¢ — @ + sin g cos (29 + ¢)

- (tgp — tg¥) (/2 — 2p — @)2 cos? @ ‘
(7/2—2¢—@)>+2 sin @ [(1/2—2%—¢) cos (2p+¢)+ sin 2p+¢)—1]

9

%

The mathematical investigation of the problem is greatly complicated by the nonlinear dependence of Ay
on ¢ = arctans'(y). On the other hand, in many practical situations, the angle of slope of the boundaries of
the region to the vertical is small compared with the angle of internal friction of the material, and it is an
advantage to use the Taylor expansion of Ak from (9)

A(@ P =0 (@) + b (@) W+ ..., G =1tgV i0)

(the analytical expressions of the coefficients ag, bk, . .. are not written out because they are so long).
Summary final results may be obtained on the basis of models in which the first one or two terms of the series
(10) are taken into account. In that case it is not clear beforehand which of these two models is preferable,
and the choice between them has to be made by comparison with the experiment. The dependences of the
coefficients ay, bk on ¢ are shown in Fig, 3.

The general solution of Eq. (8), with the obvious boundary condition of o vanishing at the level y = 0, is
written in the form

—¢ 4 A e

£ (ferdy, G 9= | 22 g, 1)
o
1]

oW s U= —
§ 8

0

where the functions f, a, and b are determined in (7), (9), and (10), and the subscript k is omitted for sim-
plicity; the first of the above models corresponds to b = 0. The equation for determining the critical flow
rate, corresponding to the beginning of breakdown of the bed, is obtained in implicit form from the require-
ment that the stress vanishes also at the upper boundary y =h of the examined region [8], i.e.,

o(h; s; u)=0. 12)

The value of u hence determined represents the functional of the functions s({y) whose concrete form
depends on the distribution of the stream of the continuum in the system and on the type of dependence of the
specific hydraulic force F on its velocity., However, in the most general case it may be assumed that the bed
breaks down when the minimum velocity uy, is attained at which in principle it is possible that a region of
plastic flow, emerging on the upper boundary of the bed (cf. [8]), forms. Thus, we arrive at the following
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extremum problem: we have to find such a profile s, (y) of the mentioned region that the functional u, im-
plicitly determined by the relation (12), assumes its minimum value; then the corresponding value up, is also
calculated from (12) by substituting the function sy, (y), already found, into the integral in (11),

By a number of perfectly natural simplifications, the formulated problem is reduced to the standard
problems of variational calculus. Thus, we describe the force F with the aid of the exponential law*

F(x, y; u) =™ V*L(x, )V, (x, y), (13)

where V is the dimensionless speed of filtering. Then the function f, which also figures in (11), is repre-
sented in the form

| = au™u™ — ysk, vt™ (y; s) =ks VIV skt dy 14)
0
In addition, we introduce the function
¥
*d s \?
20 = exa 4, o ~(=)e 15)
s So
0
where s, is the value of s(y) when y = 0. Then it follows from (11), (12), (14), and (15) that
N S SR
s_.ag,, u (a (Dz) , (16)
where
h h
O, (g.¢") = [ **gdy. Du(g: &) = [otmsedy. amn
0 0

If & = C = const, then the examined problem reduces to the isometric problem of the maximum of the
functional ®,. The sought extrema will be the unconditional extrema of the functional =&, + A &;, where A
is the Lagrange multiplier which can be determined a posteriori from the condition &, = C [14]. Obviously,
when y = 0, we must have g = 1; when y = h, the "natural® boundary condition [14] has to be satisfied. In-
troducing the function

Hy: s §) =™ (g 9)+ A4 s, (18)
where s(y) is expressed through g(y), and its derivative with the aid of the first ratio in (16), we write the
Euler equation for the functional ¢ and the boundary conditions to it. Taking into account the equalities

oH a OH O0H  ag OH

g g o g g% o a9
and using the determination of &, we obtain after calculations that
d {,0H\ . oH oH
= — — 4+ H}=0, — = 0. 20)
dy (s as)+a(s ds + ) 08 |y (

The solution of this problem yields the function s(y) which depends additionally on A or C as on a
parameter; the corresponding function g(y) is calculated from the solution of the first equation in (16) on condi-
tion that g(0) = 1. After this it is easy to calculate the functionals &; and &, from (17) and to determine u
from the second ratio in (16). Then we have to compare the values u corresponding to different A, and select
the minimal uy, from them corresponding to some Ay,. The value uy, and the solution sp, (v} of the problem
(20), with A = Ay, provide the solution of the problem.

The described calculations are very laborious, and in most cases they can be carried out only numeri-
cally. Therefore, to obtain an approximate solution in analog form, it is advisable to use strong direct
methods of variational calculus [14] and be guided in the selection of the sample functions s(y) by experimen-
tal data or by some probable physical considerations.

*Any other empirical formula may also be used for the force, e.g., Ergan's binomial formula, but this leads
to more cumbersome calculations. We also note that according to the equations of the theory of filtration, the
force F may be replaced by (K/u)(@p/dy), where p is the pressure; p is the viscosity of the continuum; K is the
permeability of the bed.
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Fig. 4. Dependence of the angle of slope
‘pfn of the boundary of the region of plastic
shear (a) and of the parameter up/u,, cor-
responding to the beginning of breakdown
(b), on ¢ for plane and axisymmetric jets
{solid and dashed lines, respectively);
curves 1 and 2 correspond to the models
with A~aand A ® a + b tany,

As examples, which even by themselves are of interest, we will examine the puncture of a fine-grained
bed (m = 1) by a plane and an axisymmetric stream. For the sake of simplicity we assume, as in [7, 8],
that the streams diverge radially, i.e.,

u=__‘7__ V. = (h+yo)k(y+yo)__
AL (T S A TR el

Equations (21) are strictly fulfilled for pan-type and conical apparatuses when the lower and upper boundaries

of the bed are cylindrical or spherical surfaces with radii y, and h + y;, respectively; for beds of other shape,
e.g., for an unbounded horizontal bed, (21) is not correct near the mouth of the jet as well as in the vicinity

of the upper boundary of the bed. In this problem, the magnitude g has the meaning of flow rate of the medium
per unit linear or solid angle, and u, the speed of the medium at the upper boundary of the bed.

1)

We consider the channel, over which the breakdown of the bed is effected first, as fairly narrow, and we
expand Vy into a series of powers of %/t +yy). Then, in accordance with (18) and (14), with k =1 and 2, we

h=1 !/ yO 3 y + 4 0

o~ e
=2 Y+ 4 \y+y
In case of radial flow of the jet, it is natural to expect that s(y) is a linear function of y +y,. There is

also experimental evidence available that s(y) is close to linear even in more general situations [2, 8]. We
therefore approximate

o)

22)

s(y) ="y + yo), 23)
where v is a parameter that has to be determined.

If we calculate the functional (17) with the aid of (22) and (23), we obtain from the second equation in
(16) for a plane jet

y e s v 14bfav (142 0o rrbdey
l+zv2—1/324+b+tav (1+ z)l+b+av___zi+b+av {24)
and for an axisymmetric jet
Uy v Ldbfav (142> ity

U = K
(1 4+22 w—3/43Fbtav (142 Fore _ 6Fe (25)

»
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Here we introduced the minimum rate of fluidization u, and the relative size of the hole z through which the
jet flows out:

Uy, = yja, 2= Yo/h- (26)

For the sake of simplicity, we examine only the situation when z < 1, Then the value Vm» providing the
minimum for the expression (24), satisfies the equation

» 1y 2
av,, (v,,,_ ?) = (b av) 2+ b+ av), @7)

and the unique minimum of (25) is attained for v = Ym> where vy, is the root of the equation
2 3 3
av,, (vm—--;}—) = (L b avg) (346 + v, @8)

The dependences of the corresponding angle between the slope ¢y, = arctan VI',II of the boundaries of the
region of plastic flow and the vertical on the angle of internal friction of the granular medium corresponding
to both suggested models (b = 0 and b < 0) are shown in Fig,4a. As was to be expected on the basis of general
considerations, for an axisymmetric jet, the values of ym are substantially smaller than for the plane jet.
Figure 4b shows the corresponding dependences of ¢ on the magnitude of up/u,. This magnitude is smaller
than unity, i.e., breakdown of the bed begins at linear filtration velocities on the upper boundary that are
smaller than the initial speed of fluidization [7, 8].

The curves in Fig. 4 favor selection of the first model when the dependence of A on ¢ is not taken into
account at all, In fact, this model correctly expresses the increase in up,/u, with increasing ¢y, in accor-
dance with the experimental data presented, e.g., in [2, 8]. The second model describes the correlation be-
tween um/u* and ¥y incorrectly. This is not surprising because the angle ¢y, is approximately the same as
¢, so that using two terms of the expansion in (10) in this case is incorrect. However, the second model may
be more accurate in situations where $, < ¢, i.e., for very narrow regions of plastic shear originating, e.g.,
during the process of channel formation.

We want to point out that if a bed is examined in an apparatus with a small angle between the walls, and
we compare the value of uv/uy,, calculated above, with the critical value determined in [8], we can answer the
question of what does occur in reality — plastic shear of the examined type or shear along the walls of the ap-
paratus.

The question of what happens to the system after the initial breakdown of static equilibrium requires
independent analysis. Experience indicates that with further increase in the flow rate of the medium, a stable
state of the bed with cavity is established; the height of the cavity increases with increasing rate until the
critical flow rate is attained at which an instantaneous "puncture” of the bed occurs., An analysis of these
phenomena, and also a comparison with experimental data, will be presented in one of the subsequent works,

NOTATION

is the function introduced into (9);

are the coefficients of expansion into Taylor series;

is the specific force of hydraulic resistance of the granular bed;
are the functions introduced into (11) and (15);

is the function from (18);

is the height of the bed;

1 and 2 are the plane and axisymmetric problems, respectively;

is the coefficient in the power law for hydraulic resistance;

is the flow rate of the continuum per unit linear or solid angle;
is the radius of the Mohr circle;

is the coordinate of the boundary of the region of plastic shear;
is the dimensional filtration velocity;

is the minimum fluidization velocity;

is the function introduced into (14);

are the coordinates;
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Voo Z are the parameters determined in (21) and (26);

1o is the coefficient of hydraulic resistance;
Y is the effective specific weight of the granular material;
] is the angle between the tangential plane on the boundary of the region of plastic shear and the

area of maximum compressive stress;
$ is the angle determined in Fig, 2;
A is the Lagrange multiplier;
v is the parameter in (23);
g is the normal compressive stress;

gy, Oy are the principal compressive stresses;

T is the tangential stress;

& are the functionals introduced into (17);

@ is the angle of internal friction of granular material;

0] is the angle between the plane, tangential to the boundary of the region of plastic shear, and

the vertical.

Subscripts

m relates to magnitudes corresponding to the initial plastic shear;

w relates to the state of stress on the boundary of the region of plastic shear;
prime differentiation of a function with respect to its argument;

angle

brackets averaged stresses with respect to the section y = const in the region of plastic shear,
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